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A B S T R A C T

Pulmonary vessel segmentation is the key application of AI in lung disease diagnosis and surgical planning.
Compared with manual labeling, automatic labeling of pulmonary vessels using an AI-based medical image
segmentation method has the advantages of low cost, high accuracy, and efficiency, which is the development
trend of medical images. In terms of pulmonary vessel segmentation, FCN and U-Net are the most widely
used pulmonary vessel segmentation methods based on deep learning. However, the precision of pulmonary
vessel segmentation, especially the small vessels, tends to be poor by such methods. Therefore, to solve the
above problem, Multi-Scale Interactive U-Net (MSI-U-Net) is proposed. In MSI-U-Net, three decoder branches
are used to extract small-scale, middle-scale and large-scale vessels respectively, which can improve the
accuracy of small vessel segmentation by enhancing the representational ability of small vessels. In addition,
to solve the problem of small vessel information loss caused by down-sampling, we introduce the attention
mechanism into the skip-layer connection and propose a cross-layer aggregation module (CLA). Among the
three decoder branches, a multi-scale information interaction strategy (MSIIS) is proposed based on transfer
learning, which can effectively enhance the correlation of multi-scale vessels in lung CT images. In the training
stage, we propose a scale-induced supervision strategy (SISS). This strategy uses the idea of fusion first and then
supervision, which effectively solves the problem of inconsistency in multi-scale vessels classification, thereby
reducing the segmentation errors. Finally, we use feature transmission instead of convolution parameter sharing
to realize the multi-scale information interaction strategy, and propose an extension scheme called Multi-Level
Cascade Interactive U-Net (MLCI-U-Net). The experimental results indicate that our MSI-U-Net and MLCI-U-Net
have better performance than other state-of-the-art methods on pulmonary vessel segmentation. Specifically,
the best Dice similarity coefficient (DSC), Sensitivity and Precision are obtained by the proposed methods to
segment pulmonary vessels.
1. Introduction

With the advancement of computer technology, medical image
processing technologies have been greatly developed, which mainly
include image enhancement, segmentation and 3D visualization. At
present, medical image processing technologies have become an impor-
tant part of medical research and clinical practice. Compared with tra-
ditional methods, medical image processing technologies based on Ar-
tificial Intelligence (AI) have the advantages of low cost, high accuracy
and efficiency, which is the trend of medical image processing.

Pulmonary vessel segmentation is an important part of medical
image processing technologies. It can provide auxiliary diagnostic func-
tions such as surgical planning, postoperative effect prediction in the
diagnosis and treatment of pulmonary nodules, pulmonary embolism
and lung tumors. In traditional methods, the pulmonary vessel label-
ing usually needs to be completed manually by professional doctors,
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which is time-consuming and error-prone. Therefore, it is of great
significance for medical diagnosis and treatment to use AI-based image
segmentation technology for automatic labeling and 3D reconstruction
of pulmonary vessels.

In recent years, with the improvement of the performance of com-
puter hardware equipment, many researchers have proposed a large
number of AI-based pulmonary vessel segmentation methods. These
methods are mainly divided into machine learning based and deep
learning based vessel segmentation methods. Among them, machine
learning based vessel segmentation methods mainly include Support
Vector Machine [1,2], Clustering algorithm [3,4] and AdaBoost algo-
rithm [5,6]. However, due to the problems of low contrast with sur-
rounding tissues, blurred boundary and high noise in lung CT data, such
methods will greatly reduce the accuracy and efficiency of pulmonary
vessel segmentation.
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Fig. 1. Comparisons of the ability of different methods to extract small vessel features.
With the development of AI technology, deep learning has replaced
traditional machine learning and become the cutting-edge technology
of AI. At present, the image segmentation methods based on deep
learning have surpassed the traditional segmentation methods in seg-
mentation speed and accuracy, and have been widely used in the
field of medical image segmentation. Among them, based on FCN [7],
Ronneberger et al. [8] proposed U-Net, which is an encoder–decoder
structure as a whole, and realizes multi-scale feature fusion by skip-
layer connection. Based on the above characteristics, U-Net is more
suitable for pulmonary vessel segmentation than FCN. In 2018, Huang
et al. [9] implemented liver vessel segmentation using 3D U-Net, which
introduced 3D convolution into the field of vessel segmentation. Com-
pared with 2D CNN, 3D CNN can greatly improve the accuracy of 3D
CT data segmentation.

Since 3D U-Net makes full use of the 3D characteristics of CT vol-
ume data, the accuracy of vessel segmentation is effectively improved.
Therefore, more and more researchers have proposed a large number
of vessel segmentation methods based on 3D U-Net. Currently, such
methods usually only use a single network to segment multi-scale
vessels simultaneously. However, as shown in Fig. 1, due to the serious
imbalance in the proportion of small and large vessels, the features
of small vessels are easily drowned in the features of large vessels,
resulting in low accuracy of small vessel segmentation. In addition,
such methods need to conduct down-sampling and pooling in feature
extraction process. The drawback of down-sampling and pooling is that
images would lose key information.

To this end, based on 3D U-Net, the Multi-Scale Interactive U-Net
(MSI-U-Net) as shown in Fig. 3 is proposed, which consists of shared
encoder and three separate decoder branches. Among them, shared
encoder can supplement information during the training process to
improve the segmentation performance and generalization ability of
MSI-U-Net. In addition, three decoder branches are used to separately
extract the vessel features of small-scale, middle-scale and large-scale,
so that small vessel features will not be drowned in the vessel features
of the other two scales.

In MSI-U-Net, to recover the information lost by down-sampling,
a cross-layer aggregation module (CLA) is proposed in this paper. In
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CLA, attention mechanism is introduced to filter the encoder features
which adapt to the three decoder branches. Moreover, based on the
idea of transfer learning, we propose a multi-scale information inter-
action strategy (MSIIS), which can enhance the correlation between
multi-scale vessel features and effectively reduce the amount of pa-
rameters and training time of MSI-U-Net. This strategy mainly realizes
the information interaction of multi-scale vessels through convolution
parameter sharing. The multi-scale model parameter sharing method
proposed in this paper mainly studies the feature transfer learning be-
tween models of different sizes of the same class of objects. In training
stage, we put forward a scale-induced supervision strategy (SISS). This
strategy would solve the problem of inconsistency in the classification
of vessels at three scales and effectively reduce the segmentation errors.

In summary, there are three main contributions of this work:
(1) We propose a Multi-Scale Interactive U-Net (MSI-U-Net) for

pulmonary vessel segmentation, which can improve the accuracy of
small vessel segmentation by enhancing the representational ability of
small vessels.

(2) In this paper, a cross-layer aggregation module (CLA) is pro-
posed for the skip-layer connection. This module enhances the encoder
features adapted to the three decoder branches by introducing attention
mechanism, so as to suppress invalid features.

(3) To enhance the information interaction between the three-
scale vessels, we propose a multi-scale information interaction strategy
(MSIIS) based on transfer learning.

(4) In the training stage, in order to solve the problem of in-
consistency in the classification of three-scale vessels, we propose a
scale-induced supervision strategy (SISS), which effectively reduces the
errors of pulmonary vessel segmentation.

2. Related work

Recently, increasing efforts have been invested to explore how to
segment the pulmonary vessels. According to the principle of segmenta-
tion methods, the existing vessel segmentation methods can be roughly
divided into the following categories: traditional segmentation meth-
ods, machine learning based segmentation methods and deep learning
based segmentation methods.
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2.1. Traditional segmentation methods

In terms of traditional segmentation methods, the main methods
include thresholding methods [10,11], region-growing methods [12–
15] and graph-cut methods [16–18]. The basic idea of the thresholding
methods is to separate the target from the background by the difference
between gray values. Lassen et al. [19] used a single threshold to
convert the raw CT images into binary images, and then classified
each voxel which belongs to foreground or background. However, the
gray values of pulmonary vessels have greatly differences, and it is
difficult to select a fixed threshold to distinguish vessel voxels from
other voxels, which also leads to the low accuracy of this method for
vessel segmentation. The region-growing methods need to manually
specify a single voxel or a small region as the growth starting point, and
then merge sub-voxels or regions according to the predefined growth
criteria and continue to grow outward until the complete segmentation
target is extracted. Orkisz et al. [20] proposed a variational region-
growing algorithm, which uses the eigenvalues of Hessian matrix to
constrain the region growing. The region-growing methods are iterative
methods, so its space and time costs are large. Furthermore these
methods are sensitive to noise, especially when the vessels and other
organs are highly similar, the segmentation results are poor. The graph-
cut methods [16–18] map an image into a weighted-graph. The vertices
represent the voxels, the edges represent the adjacency relationship
between adjacent voxels and the weights of the edges represent the
non-negative similarity between adjacent voxels in terms of grayscale,
color or texture. Such methods realize image segmentation by defining
the similarity criterion and optimizing the energy function. However,
the graph-cut methods would fall into local optimal solution, and the
segmentation performance will be greatly reduced when applied to low
contrast images.

2.2. Machine learning based segmentation methods

The image segmentation methods based on machine learning take
each pixel as center to obtain a fixed-size patch. Different feature
extraction strategies are used to obtain the feature representation from
each patch, and the classifiers are used to predict the category of
the central pixel according to the feature representation of the patch.
The exploration of the combination of feature extraction strategies and
classifiers is of great significance for pulmonary vessel segmentation.
Zhao et al. [21] extracted features by sparse autoencoders, and then
used random forest to segment vessels. Ochs et al. [22] used Hessian
features and Adaboost classifier to segment vessels. Goceri et al. [23]
used the k-means clustering method to obtain the coarse segmentation
results of vessels, and then used the iterative refinement method based
on morphological operations to further refine the segmentation results.
Zeng et al. [24] proposed a vessel segmentation method based on
Extreme Learning Machines (ELM). This method first uses anisotropic
filter to remove noise, then combines three classical vessel filters to
extract vessel features based on the prior knowledge of shape and
geometric structure. Finally, ELM is used to segment vessels. All the
above methods need to manually design the feature models of the
segmentation target. The designed feature models have many prior
parameters in idealized conditions. Practically, these feature models
will lead to a serious decline on image segmentation performance when
the images exist large differences.

2.3. Deep learning based segmentation methods

Recently, deep learning has made remarkable progress in the field of
medical image segmentation. Compared with machine learning based
methods, without any handcraft features, deep learning based meth-
ods automatically learn the vessel features from the original image.
Therefore, more and more researchers have begun to use deep learning
techniques to solve the problem of pulmonary vessel segmentation. The
3

medical image segmentation methods based on deep learning achieve
pixel-level classification through FCN [7]. Based on FCN [7], many
researchers have proposed excellent 2D fully convolutional neural net-
works such as U-Net [8], SegNet [25], DeepLab [26] and PSPNet [27],
which have achieved good results in the field of image segmentation.
Among them, U-Net [8] is used in medical image segmentation tasks
with small datasets. It is a U-shaped structure as a whole, and adopts
skip-layer connection combined with multi-scale features of encoder–
decoder, greatly improving segmentation accuracy. Due to the wide
application and better performance of U-Net in the field of medical
image segmentation, Livne et al. [28] reduced the number of channels
in each layer of classical U-Net by half, and proposed a half U-Net
to achieve brain vessel segmentation. Meng et al. [29] proposed a
Multiscale Dense Convolutional Neural Network (MDCNN) based on
encoder–decoder to achieve brain vessel segmentation on Digital Sub-
traction Angiography (DSA) images. However, since medical images are
usually 3D images and there is correlation between slices, it is easy to
lose relevant information between slices by using only 2D segmenta-
tion network, resulting in low segmentation accuracy. Therefore, more
and more researchers began to propose 3D segmentation networks
for medical image segmentation, such as 3D U-Net [30], V-Net [31],
and VoxResNet [32]. Huang et al. [9] adopted 3D U-Net with data
augmentation techniques to successfully achieve liver vessel segmen-
tation. At the same time, in order to solve the serious imbalance of
voxels between vessels and other tissues, a weighted Dice loss function
is proposed to increase the penalty for misclassified voxels. Sanches
et al. [33] proposed a Uception through combining 3D U-Net and
Inception for brain vessel segmentation. Gu et al. [34] used a cascaded
convolutional neural network. The convolutional neural network at
the first level segmented high-intensity structures including vessels and
nodules, and the second level was used to distinguish vessels and non-
vessel tissues. Xu et al. [35] adopted a stacked convolutional neural
network to extract vessels, and then used the region-growing method
to solve the discontinuity and false positive problems of vessel segmen-
tation. However, such methods suffer from two major limitations. First,
in lung CT images, there is a serious imbalance in the proportion of
small and large vessels, which leads to the features of small vessels
being easily drowned in the features of large vessels, resulting in low
accuracy of small vessel segmentation. Second, during down-sampling,
the features of small vessels would be lost, but using the skip-layer
connection directly would introduce a lot of noise.

In conclusion, the U-Net-based segmentation methods have a good
effect in medical image segmentation. In addition, since CT data are 3D
volume data, the correlation between slices needs to be considered in
feature extraction process. Therefore, we propose a Multi-Scale Inter-
active U-Net (MSI-U-Net) based on 3D U-Net [30], which can improve
the accuracy of small vessel segmentation.

3. Method

3.1. Network overview

In terms of improving the accuracy of small vessel segmentation, the
U-Net-based medical image segmentation methods preserve the small
vessel information by the skip-layer connection. However, in lung CT
images, the area of small vessels is relatively small, and the vessel
features are also few, which make the representational ability of small
vessels is insufficient. On the contrary, for large vessels, due to the
large area of space, the extracted features of large vessels would be
more than those of small vessels, resulting in a serious imbalance in the
proportions of small and large vessels in lung CT images. Therefore, if
a network segments multi-scale vessels at the same time, the features
of small vessels are easily drowned, which would lead to insufficient
training of small vessel feature extraction and low accuracy of small
vessel segmentation.
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Fig. 2. Overall architecture of the three separate networks. The three networks extract small-scale, middle-scale and large-scale vessels respectively.
To solve the above problems, we design three networks with non-
shared parameters according to the characteristics of vessels at different
scales. As shown in Fig. 2, the three networks segment the small-
scale, middle-scale and large-scale vessels separately. As the number
of down-sampling increases, the loss of vessel information becomes
more serious, so more small-scale vessel information can be preserved
only in the shallow encoder. In this regard, we select a three-layer
encoder to extract the features of small-scale vessels. In addition, as the
number of encoder layers deepens, the features of small-scale vessels
are gradually filtered out, leaving only the vessel features of the other
two scales. Therefore, in this paper, we select a four-layer encoder to
extract middle-scale vessel features, and a five-layer encoder to extract
large-scale vessel features. The above solution can effectively solve the
problem of insufficient representational ability of small vessels, and
improve the accuracy of pulmonary vessel segmentation.

The three different networks in Fig. 2 need to be trained separately,
which greatly increases both training and inference time. In addi-
tion, the three-scale vessels are trained using three separate networks.
Therefore, due to the lack of information interaction among the three
networks in Fig. 2, when multi-scale vessel feature fusion is conducted
on the three networks, a large amount of noise would be introduced.
From what has been discussed above, this method will reduce the final
segmentation accuracy. In order to solve the two problems mentioned
above, we propose a Multi-Scale Interactive U-Net (MSI-U-Net) as
shown in Fig. 3, which consists of a shared encoder and three separate
decoder branches.

When lung CT images are fed into the MSI-U-Net, the shared en-
coder extracts the pulmonary vessel features of three scales, which
are sent into three separate decoder branches respectively. Finally, the
MSI-U-Net is trained with the given scale-induced ground-truth maps.
Among them, the shared encoder is used to extract the multi-scale
features of pulmonary vessels. Since we adopt the convolutional neural
network with shared parameters in this part, when training the MSI-
U-Net, the encoder can learn the interrelation among the vessels of
three different scales, and improve the vessel feature extraction ability
of the encoder. Compared with using three separate networks, the
shared encoder can supplement information in the training process, and
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improve the segmentation performance and generalization ability of the
MSI-U-Net. In addition, the three decoder branches share a common
encoder, thus the encoder features would contain multi-scale vessel
features at the same time. Consequently, if the encoder features are
directly used as the input of each branch, it would result in redundant
features among the three branches. Therefore, in order to reduce the
coupling between the three branches, we use the three convolutional
layers with non-shared parameters as shown in Fig. 3 to extract features
that adapt to different branches. And then these features are used as
input for each branch.

In this paper, the shared encoder has five layers, which can be
expressed as 𝐸𝑙, where 𝑙 ∈ {1, 2, 3, 4, 5}. Since down-sampling will
lose vessel detail features, we use shallow features

(

𝜇1
(

𝐸3)) which
contain more features of small vessels as the input of the first branch
(small-scale branch), the fourth layer features

(

𝜇2
(

𝐸4)) as the input
of the third branch (middle-scale branch), and the fifth layer fea-
tures

(

𝜇3
(

𝐸5)) as the input of the second branch (large-scale branch).
𝜇1, 𝜇2, 𝜇3 are the convolutional layers with non-shared parameters.
Since the inputs of the three decoder branches are different, the three
decoder branches have different structures. The three decoder branches
are three-layer, four-layer and five-layer convolutional neural network
structure respectively, which are respectively represented as 𝑆_𝐷𝑠𝑙,
𝑀_𝐷𝑚𝑙, 𝐿_𝐷𝑙𝑙, where 𝑠𝑙 ∈ {1, 2, 3}, 𝑚𝑙 ∈ {1, 2, 3, 4}, 𝑙𝑙 ∈ {1, 2, 3, 4, 5}.

3.2. Cross-layer aggregation module

As shown in Fig. 3, all the three branches take encoder–decoder as
basic structure, so there is a problem of key information loss caused by
down-sampling, and such lost information is difficult to recover only
by decoder. As shown in Fig. 2, in U-Net, the spatial detail information
can be preserved by directly overlaying the left and right feature maps
with the same resolution using the skip-layer connection. However, this
fusion method does not make full use of features, and will introduce
a lot of noise, impairing the feature representational ability of the
MSI-U-Net.

In response to the above problems, we consider that each decoder
branch needs to fuse the encoder features that adapt to it. As shown



Biomedical Signal Processing and Control 80 (2023) 104407R. Wu et al.
Fig. 3. Overall architecture of the proposed MSI-U-Net. Based on ResUNet, the MSI-U-Net consists of a shared encoder and three decoder branches.
Fig. 4. Overview of cross-layer aggregation module. In CLA, the Axial Attention module (blue) uses separable convolution instead of classical convolution to implement the
attention mechanism, where k is the size of convolution kernel, which is set to 9 in the experiments. In addition, the output features are obtained after three convolutional layers
(gray) with shared parameters.
in Fig. 4, we design a cross-layer aggregation module (CLA). In CLA,
the attention mechanism is introduced to fuse the encoder features to
recover the lost information. In Fig. 4, the encoder features will go
through the three attention modules with non-shared parameters. The
feature maps after the three attention modules are shown in Fig. 5,
which have following advantages. First, the feature maps would filter
out a lot of noise and keep the major features of the vessel regions.
Second, the generated three feature maps show higher response values
in small-scale, middle-scale and large-scale vessel regions respectively.
In other words, the generated three feature maps are adapted to the
three decoder branches respectively. Finally, the three feature maps
enhanced by the attention modules are fused with the features of
the corresponding decoder branch to recover the lost spatial detail
information.

Due to the different layers of the three decoder branches, the inputs
and outputs of CLA module are different. In this paper, the definitions
of the operations in CLA are as follows:

when 𝑙 = 4,

𝐸_𝑓𝑙_𝑙 = 𝐶𝑎𝑡
(

𝐴2_𝑙
(

𝐸𝑙) , 𝐿_𝐷𝑙) (1)

when 𝑙 = 3,

𝐸_𝑓𝑙_𝑙 = 𝐶𝑎𝑡
(

𝐴2_𝑙
(

𝐸𝑙) , 𝐿_𝐷𝑙) ,

𝐸_𝑓𝑚_𝑙 = 𝐶𝑎𝑡
(

𝐴3_𝑙
(

𝐸𝑙) ,𝑀_𝐷𝑙) (2)

when 𝑙 = 1 or 𝑙 = 2,

𝐸_𝑓𝑙_𝑙 = 𝐶𝑎𝑡
(

𝐴2_𝑙
(

𝐸𝑙) , 𝐿_𝐷𝑙) ,

𝐸_𝑓𝑚_𝑙 = 𝐶𝑎𝑡
(

𝐴3_𝑙
(

𝐸𝑙) ,𝑀_𝐷𝑙) ,

𝐸_𝑓𝑠_𝑙 = 𝐶𝑎𝑡
(

𝐴1_𝑙
(

𝐸𝑙) , 𝑆_𝐷𝑙)
(3)

where 𝐸_𝑓𝑙_𝑙, 𝐸_𝑓𝑚_𝑙, 𝐸_𝑓𝑠_𝑙 represent the large-scale, middle-scale and
small-scale vessel features after the fusion of the 𝑙𝑡ℎ layer respec-
tively, 𝐸𝑙 represents the encoder features of the 𝑙𝑡ℎ layer, 𝐿_𝐷𝑙, 𝑀_𝐷𝑙,
5

𝑆_𝐷𝑙 represent the features of large-scale, middle-scale and small-scale
branch of the 𝑙𝑡ℎ layer respectively, 𝐴1_𝑙, 𝐴2_𝑙, 𝐴3_𝑙 represent the three
attention modules with non-shared parameters of the 𝑙𝑡ℎ layer, 𝐶𝑎𝑡
indicates the concatenation.

3.3. Multi-scale information interaction strategy

As shown in Fig. 3, Multi-Scale Interactive U-Net has three separate
decoder branches. In general, the three branches require independent
training. This strategy ignores the multi-scale vessel feature correlation,
and will greatly increase the network parameters and training time.
In [36], Oquab M et al. have demonstrated the transfer learning proper-
ties of convolutional neural networks. A model trained on the ImageNet
for image classification shows good object detection performance with
only fine-tuning on the PASCAL. The transfer learning method of neural
networks is to transfer the feature expression ability learned from
one task or dataset to another task or dataset. The reason for its
effectiveness is that the neural networks can learn common features
such as edge and texture features between objects, so such features
can be shared. The source and target data used in this paper are the
same class of objects (pulmonary vessels), but the sizes of the samples
they contain are different. In this regard, we propose a multi-scale
information interaction strategy. The strategy uses a multi-scale model
parameter sharing method to share the convolution weights of convo-
lutional neural network models at different scales, so as to realize the
convolution feature sharing under different scale models. This method
is essentially a transfer learning method of neural networks [37].

The multi-scale model parameter sharing method proposed in this
paper mainly studies the feature transfer learning between models of
different sizes of the same class of objects. That is, we share kernel
parameters of convolutional neural network at different scales in the
same layer. As shown in Fig. 4, there are three convolutional layers on
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Fig. 5. Visualization results of outputs of three attention modules. (a) The input image. (b) The outputs of small-scale vessel attention module. (c) The outputs of middle-scale
vessel attention module. (d) The outputs of large-scale vessel attention module.
the right in the CLA whose parameter settings are exactly the same.
Therefore, the multi-scale information interaction strategy designed in
this paper can not only reduce the computing cost and improve the
segmentation efficiency, but also enhance the multi-scale vessel corre-
lation in lung CT images, so as to improve the accuracy of pulmonary
vessel segmentation, especially small vessels.

3.4. Scale-induced supervision

In Fig. 3, 𝜇𝑖
(

𝐸𝑗) (𝑖 ∈ {1, 2, 3} , 𝑗 ∈ {3, 4, 5}) pass through three sepa-
rate decoder branches, and the multi-scale vessel feature maps can be
obtained. The obtained features maps have the following characteris-
tics. First, three decoder branches can respectively extract small-scale,
middle-scale and large-scale vessel features in lung CT images. Second,
since the same CT sequence is divided into three scales and each scale is
separately encoded, there will be inconsistency phenomenon in vessel
classification at the three scales. Aiming at the feature fusion of the
three decoder branches, we design a multi-scale feature fusion module
as shown in Fig. 3, and use the scale-induced supervision strategy to
train the MSI-U-Net.

In Fig. 3, the extracted vessel features by the three decoder branches
can be represented as 𝐹𝑆 , 𝐹𝑀 and 𝐹𝐿 respectively. Due to the in-
consistency in the classification of small-scale, middle-scale and large-
scale vessels, it is easy to increase the segmentation errors if the
segmentation results of the three-scale vessels are directly supervised
by the corresponding ground-truth maps at this time. Therefore, the
small-scale, middle-scale and large-scale vessel features are first fused
(𝐶𝑎𝑡(𝐹𝑆 , 𝐹𝑀 , 𝐹𝐿)) and then the middle-scale and large-scale vessel fea-
tures are fused (𝐶𝑎𝑡(𝐹𝑀 , 𝐹𝐿)) to obtain two new feature maps (𝐹𝑆+𝑀+𝐿
and 𝐹𝑀+𝐿). After that, the corresponding scale segmentation results
(𝑆𝑆+𝑀+𝐿, 𝑆𝑀+𝐿 and 𝑆𝐿) as shown in Fig. 6 are generated using
1 × 1 × 1 convolutional layer for 𝐹𝑆+𝑀+𝐿, 𝐹𝑀+𝐿 and 𝐹𝐿 respectively.
Finally, the corresponding scale-induced ground-truth maps are used
for supervised training.

The above supervision strategy adopts the idea of fusion first and
then supervision. Since the fused feature maps contain multi-scale
6

vessel features, compared with using single-scale vessel features, using
the fused multi-scale vessel features can effectively solve the problem
of inconsistency in the classification of three-scale vessels. And this
strategy can reduce the segmentation errors, thereby improving the
accuracy of multi-scale vessel segmentation.

In this paper, the Dice loss function is used to train the MSI-U-Net,
and the total loss is calculated as follows:
𝐿 = 𝐿1 + 𝛼 × (𝐿2 + 𝐿3)

𝐿1 = 𝐿𝐷𝑖𝑐𝑒(𝑆𝑆+𝑀+𝐿, 𝐺𝑆+𝑀+𝐿)

𝐿2 = 𝐿𝐷𝑖𝑐𝑒(𝑆𝑀+𝐿, 𝐺𝑀+𝐿)

𝐿3 = 𝐿𝐷𝑖𝑐𝑒(𝑆𝐿, 𝐺𝐿)

(4)

𝐺𝑆+𝑀+𝐿 = 𝐺𝑆 + 𝐺𝑀 + 𝐺𝐿

𝐺𝑀+𝐿 = 𝐺𝑀 + 𝐺𝐿
(5)

𝐿𝐷𝑖𝑐𝑒 = 1 −
2
∑𝑛

𝑖=1 𝑆𝑖𝐺𝑖
∑𝑛

𝑖=1 𝑆
2
𝑖 +

∑𝑛
𝑖=1 𝐺

2
𝑖

(6)

where 𝐺𝑆 , 𝐺𝑀 and 𝐺𝐿 represent the labels of small-scale, middle-scale
and large-scale vessels respectively, 𝑁 represents the number of voxels
in lung CT images.

4. Model extension

In this paper, MSI-U-Net is proposed to solve the problem of serious
imbalance in the proportion of small and large vessels in lung CT
images. In addition, in MSI-U-Net, the convolution parameter sharing
method is used to enhance the relationship between multi-scale vessels,
emphasizing the feature consistency of multi-scale vessels, and effec-
tively improving the accuracy of pulmonary vessel segmentation. In this
paper, a new extension scheme for multi-scale information interaction
strategy is proposed, that is, multi-scale vessel information interaction
is realized by Multi-Level Cascade Interactive U-Net (MLCI-U-Net).
This scheme emphasizes the spatial context of multi-scale vessels with
cascade structure.

As shown in Fig. 7, we adopt a scale-induced supervision strategy
for supervised training on the three branches. In other words, the
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Fig. 6. Examples of scale masks generated by our model. (a) The input image. (b) The scale mask captures large-scale vessels. (c) The scale mask concentrates on middle and
large scale vessels. (d) The scale mask catches the small, middle and large scale vessels.
Fig. 7. Overall architecture of the proposed MLCI-U-Net. The MLCI-U-Net uses feature fusion instead of convolution parameter sharing to achieve information interaction between
multi-scale vessels.
first branch contains small-scale, middle-scale and large-scale vessel
features, the second branch contains middle-scale and large-scale vessel
features, and the third branch contains only large-scale vessel features.
Therefore, the target regions of the three branches exist in a contained
relationship. In addition, as large vessels account for a relatively large
area in lung CT images, while the area of small vessels is relatively
small, it is hard to segment small vessels among the three scales. There-
fore, the segmentation difficulty of the three branches is increasing
from bottom to top.
7

To solve the above problems, we propose a Multi-Level Cascade In-
teractive U-Net (MLCI-U-Net) for multi-scale pulmonary vessel segmen-
tation. In MLCI-U-Net, we cascade three convolutional neural networks
in multi-layer to perform the multi-scale pulmonary vessel segmenta-
tion task at one time. As shown in Fig. 7, the cascade structure is
composed of three decoder branches, so that the former branch can
provide multi-scale supplementary features for the latter branch, as the
spatial constraint information of the subsequent branches. The three
branches generate segmentation results of three scales respectively
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𝑆

a

(from bottom to top are large-scale, large-scale + middle-scale, large-
scale + middle-scale + small-scale). In the three decoder branches, the
internal structure of the same layer is consistent. Among them, the
third and the second decoder branches perform feature fusion by over-
laying the features of the same layer. Since the third decoder branch
contains the location information of large-scale vessels, it can provide
the spatial information of large-scale vessels for the second branch.
Similarly, the second decoder branch is connected in the same way
as the first decoder branch, passing the spatial information of large-
scale and middle-scale vessels to the first decoder branch. In the three
decoder branches, since the large-scale vessels are easier to segment
than the small-scale and middle-scale vessels, the third decoder branch
can also obtain location information of large-scale vessels well without
additional constraints.

In the above extension scheme, we realize a multi-scale information
interaction strategy through feature transmission. Due to the multi-
layer cascade feature transmission method, the former branch can
transfer multi-scale prior knowledge to the latter branch, which can
softly constrain the focus range of the latter branch. In addition, in
the process of feature transmission, this strategy also adds auxiliary
features for small-scale and middle-scale vessel segmentation, which
alleviates the problem of sample imbalance to a certain extent and can
effectively improve the accuracy of small-scale vessel segmentation.

5. Experiments

5.1. Datasets and pre-processing

In the experiments, we use the datasets that all from a hospital in
Zhejiang Province. The datasets contain 143 cases, and each case is a
real clinical CT sequence. In summary, the number of slices in each
case is in the range of 135 to 513, and the 143 cases contain a total
of 29,056 CT images with a size of 512*512. All the data used in this
paper are manually-labeled one by one under the guidance of medical
experts.

The original CT data obtained from the hospital are all in dicom
format, whose voxel values are represented by the Hounsfield Unit
(HU) values from −1000 to more than +3000. In order to make the
lung and vessel region more obvious, the voxel values are truncated
in the range of [−950,+250], and then the voxel values are linearized
and normalized to the range of [0, 1]. In addition, we use the linear
gray level transformation to enhance the contrast between vessels and
other background regions. The CT images after the linear gray level
transformation can enhance the vessels, while the other background
regions can be better suppressed. This method lays a good foundation
for pulmonary vessel segmentation. In this paper, the experimental data
is pre-processed, where 70% is used as the training set, 30% as the
validation set.

5.2. Implementation details

In this paper, PyTorch is used to implement Multi-Scale Interactive
U-Net. All experiments of our proposed method are performed on a
workstation with Intel Core i7-10700KF CPU @ 3.80 GHz, 32G RAM,
NVIDIA GeForce RTX 3090 GPU. In the training stage, the Adam opti-
mizer with the initial learning rate of 0.0001 is employed to perform
the gradient descent algorithm. And then the learning rate is divided
by 10 every 40 epochs. If the loss of validation set does not decrease
for 30 consecutive epochs, or the maximum number of training epochs
has been reached, the training is stopped. The model with the smallest
validation set loss during training is preserved and evaluated on the
testing set. In terms of data augmentation, a random cropping strategy
is used to limit the size of the network inputs, where the number of
randomly cropped slices is 16. In the testing stage, we use a sliding
window strategy to obtain the final segmentation results, and the
inference time for each CT sequence is about 8 to 43 s.
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Table 1
The settings of supervision for decoder branches.

Supervision Sen Pre DSC

Full 0.6716 0.7202 0.6767
Scale-induced without fusion 0.6787 0.7563 0.6941
Scale-induced with fusion 0.7234 0.7893 0.7168

5.3. Evaluation metrics

In order to compare the performance of different methods, we use
Dice similarity coefficient (DSC), Sensitivity (Sen) and Precision (Pre)
as evaluation metrics in experiments. Among them, DSC is an indicator
to measure the degree of overlap between segmentation results and
labels, where 1 means complete overlap and 0 means no overlap at all.
Sensitivity is used to evaluate the ratio of correctly segmented vessels
to labeled vessels, that is, the ratio of correctly predicted samples
to the total positive samples. Precision is used to evaluate the ratio
of correctly segmented vessels to the segmented vessels, that is, the
ratio of correctly predicted samples to predicted positive samples. The
definitions of DSC, Sen and Pre are as follows:

𝐷𝑆𝐶 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑒𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(7)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 represent the number of true positives,
true negatives, false positives and false negatives respectively.

5.4. Comparison with other supervision strategies

In order to validate the effectiveness of the scale-induced super-
vision strategy, we conduct comparative experiments with different
settings on the training targets of the three decoder branches. In Ta-
ble 1, full supervision means that complete labels including small-scale,
middle-scale and large-scale vessels are used for supervision training of
the three branches. The scale-induced without fusion refers to the use
of small-scale, middle-scale and large-scale vessel labels to separately
train three branches, namely, as shown in Fig. 3, the first branch
only extracts small-scale vessels, the second branch only extracts large-
scale vessels and the third branch only extracts middle-scale vessels.
The scale-induced with fusion represents the training of Multi-Scale
Interactive U-Net using the scale-induced supervision proposed in this
paper.

As shown in Fig. 3, the inputs of the three decoder branches are the
encoder features of the third layer, the fourth layer and the fifth layer
respectively, that is, the inputs of the three decoder branches already
contain the prior knowledge of multi-scale vessels. Therefore, as shown
in Table 1, if the three decoder branches are directly trained with
complete vessel labels at this time, the training difficulty of the MSI-U-
Net will be increased. This strategy would greatly reduce the accuracy
of pulmonary vessel segmentation. In addition, due to the problem
of inconsistency in the classification discussed in Section 3.4, if the
segmentation results of the three-scale vessels are directly supervised
by the corresponding ground-truth maps at this time, the segmentation
errors tend to be increased.

As shown in Table 1, the idea of fusion first and then supervision,
namely, the scale-induced supervision strategy proposed in this paper is
used to train MSI-U-Net, which can effectively solve the problem of the
inconsistency in the classification of three-scale vessels. This strategy
can reduce the segmentation errors, so as to improve the accuracy of
pulmonary vessel segmentation.

Since the vessel regions of the three feature maps (𝐹𝑆+𝑀+𝐿, 𝐹𝑀+𝐿
nd 𝐹𝐿) generated by MSI-U-Net and MLCI-U-Net all have the con-

ained relationship, we use the hyperparameter 𝛼 to control the weight
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Fig. 8. Evaluation of the proposed network with different 𝛼.
of 𝑆𝑀+𝐿 and 𝑆𝐿 generated by 𝐹𝑀+𝐿 and 𝐹𝐿 in the total loss. In this
section, we conduct comparative experiments on the choice of 𝛼. As
shown in Fig. 8, since the segmentation difficulties of the three seg-
mentation results (𝑆𝑆+𝑀+𝐿, 𝑆𝑀+𝐿 and 𝑆𝐿) are successively decreasing,
the optimal 𝑆𝑀+𝐿 and 𝑆𝐿 can be obtained only by selecting a smaller
𝛼. However, as shown in Fig. 8, if the selected 𝛼 is too small, the model
training will also be insufficient. In conclusion, as shown in Fig. 8, when
𝛼 is set to 0.7 in the experiment, both MSI-U-Net and MLCI-U-Net can
obtain the optimal pulmonary vessel segmentation results.

5.5. Ablation studies

In order to validate the effectiveness of each module in the MSI-U-
Net, we conduct ablation studies based on ResUNet architecture, and
the results are shown in Table 2.

Decoder Branches: Based on ResUNet, we verify the effectiveness
of the three decoder branches. ResUNet segments small-scale, middle-
scale and large-scale vessels in the same neural network. However,
at this time, the features of small vessels are easily drowned in the
features of large vessels. As shown in Fig. 3, the MSI-U-Net extracts ves-
sels of three scales through three decoder branches, which effectively
improves the representational ability of small vessels. As shown in
Table 2, in terms of segmentation performance, the decoder branches
proposed in this paper have a significant improvement compared to
ResUNet.

Cross-Layer Aggregation Module: ResUNet uses the skip-layer
connections to preserve the information lost by down-sampling. How-
ever, there are three decoder branches in MSI-U-Net and the encoder
features contain multi-scale vessel features at the same time. Therefore,
if encoder features are directly fused with decoder branches features,
a lot of noise would be introduced, which greatly reduces the segmen-
tation accuracy. In this regard, we introduce an attention mechanism
(Att) into the skip-layer connections, and filter out the encoder features
which adapt to each decoder branch for aggregation, so as to suppress
invalid features. As shown in Table 2, the cross-layer aggregation
module proposed in this paper can effectively reduce the interference
of noise and improve the segmentation accuracy to a certain extent.

Multi-Scale Information Interaction Strategy: In the three de-
coder branches of MSI-U-Net, we conduct ablation studies on whether
to use the convolution kernel with parameter sharing. As shown in
Table 2, the experimental results show that using three completely
separate decoder branches would lead to the neglect of the correla-
tion among multi-scale vessel features in the training process. On the
contrary, the introduction of multi-scale information interaction strat-
egy between decoder branches can effectively enhance the correlation
between small-scale, middle-scale and large-scale vessels in lung CT
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images.
Table 2
Performance of the network with different modules.

Settings Sen Pre DSC

Baseline 0.6977 0.7574 0.6928
Baseline + Branches 0.7005 0.7632 0.7002
Baseline + Branches + CLA without Att 0.7078 0.7689 0.7056
Baseline + Branches + CLA with Att 0.7164 0.7723 0.7078
Baseline + Branches + CLA with Att + Interactive 0.7234 0.7893 0.7168

Table 3
Comparative evaluation with some classic methods.

Methods Sen Pre DSC Inference time (s)

3D U-Net [30] 0.6868 0.7525 0.6852 3∼26
3D Attention U-Net [38] 0.7127 0.7388 0.7075 4∼28
3D ResUNet 0.6977 0.7574 0.6928 3∼26
V-Net [31] 0.6799 0.7334 0.6701 3∼26
3D SegNet [25] 0.5571 0.6385 0.5989 3∼25
3D DeeplabV3+ [26] 0.7068 0.7632 0.7057 3∼27
KiU-Net [39] 0.7121 0.7730 0.7159 5∼29
3D UNet 3+ [40] 0.7102 0.7677 0.7134 8∼59
Ours(MLCI-U-Net) 0.7207 0.7785 0.7154 7∼50
Ours(MSI-U-Net) 0.7234 0.7893 0.7168 7∼48

Table 4
Quantitative comparison results on the small vessels.

Methods Sen Pre DSC

3D U-Net [30] 0.5086 0.6214 0.5910
3D Attention U-Net [38] 0.5426 0.6913 0.6114
3D ResUNet 0.5360 0.6686 0.5997
V-Net [31] 0.5295 0.6450 0.5974
3D SegNet [25] 0.4982 0.6164 0.5530
3D DeeplabV3+ [26] 0.5391 0.6834 0.6012
KiU-Net [39] 0.5455 0.6893 0.6215
3D UNet 3+ [40] 0.5436 0.6840 0.6190
Ours (MSI-U-Net) 0.5568 0.7056 0.6224
Ours (MLCI-U-Net) 0.5559 0.7116 0.6217

5.6. Comparison with other segmentation methods

In this subsection, we compare our method with other state-of-the-
art methods. It turns out that the results of our model are consistently
better than those of baselines. The experimental results are summarized
in Table 3. In addition, in order to show the details of vessel segmenta-
tion, we intercept some segmentation results for visualization, as shown
in Fig. 9.

In Fig. 9, from left to right are the original images, the corre-
sponding labeling results, the segmentation results of ResUNet and
the segmentation results of MSI-U-Net. It can also be seen from the
visualization results that the MSI-U-Net proposed in this paper shows
good segmentation performance in the pulmonary vessel segmentation
task. Especially in most of the small vessel regions in the figures, it has
a significant improvement compared with other segmentation methods.
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Fig. 9. Examples of performances of the MSI-U-Net and other methods on slices.
In addition, as shown in Fig. 10, we also show some 3D visual-
ization results. In Fig. 10, from left to right are the labeled results,
the segmentation results of ResUNet and the segmentation results of
MSI-U-Net.

It can be seen from the 3D results that there are many misclas-
sified voxels and some messy fragments in 3D visualization results
of ResUNet, resulting in vessel structure disorder, while the vessels
extracted by MSI-U-Net are closer to the real vessels. Compared with
other methods, it can obtain more complete pulmonary vessel structure.

Small Vessels: Although the main target of pulmonary vessel seg-
mentation is to extract all vessels in the lung, most existing methods can
only extract large-scale vessels. However, in clinical practice, doctors
usually need to design surgical plans based on the tendencies of small
vessels. Therefore, we also validate the ability of MSI-U-Net to segment
small vessels. As shown in Table 4, since the proposed MSI-U-Net can
enhance the representational ability of small vessels and effectively
reduce the information loss of small vessels, the proposed method is
superior to other methods on the metrics. In addition, the extension
scheme MLCI-U-Net proposed in this paper uses feature fusion instead
of convolution parameter sharing to achieve a multi-scale information
interaction strategy. In MLCI-U-Net, adding auxiliary features for small
vessel segmentation can also alleviate the problem of sample imbalance
and effectively improve the segmentation effect. Therefore, in the two
schemes proposed in this paper, if it is necessary to extract small vessels
for separate analysis and diagnosis, it is better to use MLCI-U-Net.
MSI-U-Net has a better effect if multi-scale pulmonary vessels need
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to be extracted simultaneously for auxiliary diagnosis of pulmonary
embolism and lung nodule.

6. Conclusion

In this paper, a Multi-Scale Interactive U-Net (MSI-U-Net) is pro-
posed. In MSI-U-Net, there are three decoder branches to extract small-
scale, middle-scale and large-scale vessels respectively, which greatly
alleviates the problem of insufficient representational ability of small
vessels. In addition, in order to solve the problem of information loss
caused by down-sampling, we use a cross-layer aggregation module to
select the encoder features which adapt to each decoder branch for ag-
gregation, so as to suppress invalid features. On this basis, we propose a
multi-scale information interaction strategy, which implements feature
transfer among multi-scale vessels in the way of convolution kernel
parameters sharing. This strategy enhances the correlation between
small-scale, middle-scale and large-scale vessels in lung CT images.

In this paper, we use a pulmonary vessel dataset finely labeled
by medical experts for experiment. In the experiments, we use the
scale-induced supervision strategy to train MSI-U-Net, which effec-
tively alleviates the problem of inconsistency in multi-scale vessel
classification and reduces the segmentation errors. In addition, we
propose an extension scheme named Multi-Level Cascade Interactive
U-Net (MLCI-U-Net) for multi-scale information interaction strategy,
which effectively improves the precision of small vessel segmentation.
Among them, the evaluation scores of DSC, Sensitivity and Precision
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Fig. 10. 3D visualization examples of different methods.
are the maximum values, which are 0.7168, 0.7234 and 0.7893 respec-
tively. Besides, in terms of small vessel segmentation, the precision of
MLCI-U-Net reaches 0.7116.

The MSI-U-Net has great advantages in the segmentation of small
vessels, but the segmentation efficiency of MSI-U-Net is lower than that
of classical medical image segmentation methods. Therefore, the MSI-
U-Net still has a lot of room for improvement in achieving lightweight.
In terms of model design, the MSI-U-Net has modeled the pulmonary
vessel segmentation. In the following research, the MSI-U-Net will be
further optimized and adjusted to realize the application of lung CT
auxiliary diagnoses such as lung tumor and lung nodule segmentation.
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